A

Argonne

NATIONAL
LABORATORY

... for a brighter future

UChicago »

Argonne, .

P76 Office of

State Notation Language and the Sequencer

Andrew Johnson
APS Engineering Support Division

January 2007
USPAS EPICS Course

Outline

What is State Notation Language (SNL)

Where it fits in the EPICS toolkit

Components of a state notation program

Some notes on the Sequencer runtime

Building, running and debugging a state notation program

Additional Features

When to use it

This talk covers Sequencer version 2.0.8

This talk does not cover all the features of SNL and the sequencer. Consult the

manual for more information:
http://www.slac.stanford.edu/comp/unix/package/epics/sequencer/

SNL and the Sequencer

B The sequencer runs programs written in State Notation Language (SNL)

B SNL is a ‘C’ like language to facilitate programming of sequential operations
B Fast execution - compiled code

B Programming interface to extend EPICS in the real-time environment

B Common uses

— Provide automated start-up sequences like vacuum or RF where subsystems
need coordination

— Provide fault recovery or transition to a safe state
— Provide automatic calibration of equipment

Where’s the Sequencer?

The major software components of an |IOC (I0OC Core)

LAN

I/O Hardware

Where’s the Sequencer Now?

Tools

Sequencer || MEDM Client Client Client MEDM

LAN

Server 10C 10C 10C

Meter Power Supply Camera

The Best Place for the Sequencer

B Recent versions of the sequencer can be run either in
an 10C or as a standalone program on a workstation

Traditionally sequencers run in the |OC

Locating them within the |OC they control makes them
easier to manage

B Running them on a workstation can make testing and
debugging easier

B On a workstation, SNL provides an easy way to write
simple CA client programs

SNL implements State Transition Diagrams

¢

State A
Transition ﬁ Event
AtoB ﬁL Action
State B

¢

STD Example

Start

¢

= LOW vacuum

Y

pressure < 5.1 uTorr

Open the valve

High vacuum

pressure > 4.9 uTorr

Close the valve

Some Definitions

B SNL : State Notation Language

B SNC : State Notation Compiler

B sequencer : The tool that executes the compiled SNL code

B Program : A complete SNL application consisting of declarations and one or more
state sets

B State Set : A set of states that make a complete finite state machine

B State : A particular mode of the state set in which it remains until one of its

transition conditions is evaluated to be TRUE

SNL: General Structure and Syntax

program program nane
declar ati onS

Ss state _set nane {
state state nane {

entry _
entry action statenents

when (event)
action statenents
} state next state nane
when (event) {
} state next_state nane

exit{ . _
exit action statenents

State state nane {

SNL: General Structure and Syntax

program nane A program may contain multiple state sets. The program
name is used as a handle to the sequencer manager for state
programs.

ss nane { A state set becomes a task in the vxWorks environment.

state nane { A state is an area where the task waits for events. The related

task waits until one of the events occurs and then checks to
see which it should execute. The first state defined in a state
set is the initial state.

option flag; A state specific option
when (event) { Defines the events for which this state waits.
} state next Specifies the following state after the actions complete.

entry {actions} Actions to do on entry to this state from another state. With
option -e; itwill dothese actions even if it re-enters from
the same state.

exit {actions} Actions to do before exiting this state to another state. With
opti on -x; itwill do these actions even if it exits to the
same state.

Declarations — Variables

B Appear before a state set and have a scope of the entire program.
M Scalar variables

| nt var _nane;

short var_nane;

| ong var _nane,

char var _nane;

float var_nane;

doubl e var nane;

string var_nane; /* 40 characters */
B Array variables: 1 or 2 dimensions, no strings

| nt var _nanme[num el enent s] ;

short var_nane[num el enent s];

| ong var _nane[num el enent s]j ;

char var _nane[num el enent s]j ;

float var_nane[num el enent s];

doubl e var _nanme[num el enent s] ;

A

Argonne

TORY

Declarations — Assignments

B Assignment connects a variable to a channel access PV name
fl oat pressure;
assign pressure to Coupl erPressureRBl ;
doubl e pressures| 3];

assign pressures to { Coupl erPressureRBl |,
Coupl er PressureRB2 Coupl er PressureRB3 };

B To use these channel in when clauses, they must be monitored
noni tor pressure,;
noni tor pressures;

B Use preprocessor macros to aid readability:
#define varMon(t,n,c) t n; assign n to c; nonitor n;
var Mon(fl oat, pressure, PressureRBl)

A

Argonne

TORY

Declarations — Event Flags

B Event flags are used to communicate between state sets, or to receive explicit
event notifications from Channel Access

B Declare like this:
evfl ag event fl ag_nane;

B An event flag can be synchronized with a monitored variable
sync var _nane event fl ag_ nane;

B The flag will then be set when a monitor notification arrives
evfl ag flag_nonitor;
sync pressure flag nonitor;

Events

Event: The condition on which actions associated with a when are run and a state
transition is made.

Possible events:
B Change in value of a variable that is being monitored:

when (achan < 10.0)

B A timer event (not a task delay!):
when (delay(1.5))

— The delay time is in seconds. It is declared internally as a double; constant
arguments to the delay function must contain a decimal point.

— A delay is normally reset whenever the state containing it is exited.

— Use the state specific opti on -t ; to stop it from being reset when
transitioning to the same state.

Possible Events (continued)

B The state of an event flag:
when (ef Test Andd ear (nyfl ag))
when (ef Test (nyfl ag))
— ef Test () does not clear the flag. ef O ear () must be called sometime
later to avoid an infinite loop.

— If the flag is synced to a monitored variable, it will be set when the channel
sends a value update

— The event flag can also be set by any state set in the program using
ef Set (event fl ag _nane)

B Any change in the channel access connection status:

when (pvConnect Count () < pvChannel Count())
when (pvConnect ed(nychan))

Action Statements

B Built-in action function, e.qg. :

— pvPut (var _nane);

— pvGet (var _nane);

— ef Set (event _flag_nane);

— efC ear(event _flag nane);
B Almost any valid C statement

— swi tch() /s not implemented and code using it must be escaped.

%oescapes one line of C code

A

escape any number of lines of C code

} %

Example — State Definitions and Transitions

Initial State

pressure > .0000051

RoughPump on pressure <= .0000049
CryoPump off RoughPump off
Valve closed pressure <= .0000049 CryoPump on
RoughPump off Valve open
CryoPump on
Valve open
Low Vacuum | High Vacuum

<
<«

pressure > .0000051

10 minutes RoughPump on
RoughPump off CryoPump off
CryoPump off Valve closed

Valve closed

Fault

A

Argonne

NATIONAL LABORATORY

Example — Declarations

doubl e pressure;
assign pressure to TanklCoupl er1lPressureRB ;
noni tor pressure,;

short RoughPunp;

assign RoughPunp to Tankl1lCoupl er 1IRoughPunp ;
short Cr yoPunp;

assign CryoPunp to Tankl1lCoupl er1CryoPunp ;

short Val ve;

assign Valve to TanklCoupl erllsol ationValve ;
string CurrentState;

assign CurrentState to Tankl1lCoupl erlVacuunttate ;

Example — State Transitions, Actions Omitted

program vacuum cont r ol

ss coupl er_control
{
state init{
when (pressure > .0000051){
} state | ow vacuum
when (pressure <= .0000049) {
} state high vacuum
}
state hi gh vacuunm
when (pressure > .0000051){
} state | ow vacuum
}
state | ow vacuun
when (pressure <= .0000049) {
} state high vacuum
when (del ay(600.0)){
} state fault

}

state fault {

Example — Initial State

state init {

entry {
strcpy(CurrentState, Init);
pvPut (Current St ate);

}

when (pressure > .0000051){
RoughPunp = 1;
pvPut (RoughPunp) ;
CryoPump = 0O;
pvPut (Cr yoPunp) ;
Val ve = 0;
pvPut (Val ve) ;

} state | ow vacuum

when (pressure <= .0000049)({
RoughPunp = 0;
pvPut (RoughPunp) ;
CryoPump = 1;
pvPut (CryoPunp) ;
Val ve = 1;
pvPut (Val ve) ;

} state high vacuum

Example — State low _vacuum

state | ow vacuun

entry {
strcpy(Current State, Low Vacuum);
pvPut (Current St ate) ;

}

when (pressure <= .0000049)({
RoughPunmp = O;
pvPut (RoughPunp) ;

CryoPunp = 1;
pvPut (Cr yoPunp) ;
Val ve = 1;

pvPut (Val ve) ;
} state high _vacuum
when (del ay(600.0)){
} state fault

Example — State high_vacuum

state high_vacuum

entry {
strcpy(Current State, H gh Vacuum);

pvPut (Current St ate) ;
}
when (pressure > .0000051){
RoughPump = 1;
pvPut (RoughPunp) ;

CryoPunp = O;
pvPut (Cr yoPunp) ;
Val ve = 0;

pvPut (Val ve) ;
} state | ow vacuum

Example — State fault

state fault{
ent r y{

strcpy(Current State, Vacuum Fault);
pvPut (Current St ate) ;

Building an SNL program

B Use editor to build the source file. File name must end with
“.st” or “.stt’, e.g. “example.st”

B “make” automates these steps:
— Runs the C preprocessor on “.st” files, but not on “.stt” files.
— Compiles the state program with SNC to produce C code:
snc example.st -> example.c
— Compiles the resulting C code with the C compiler:
cc example.c -> example.o

— The object file "example.0o” becomes part of the application library, ready to
be linked into an IOC binary.

— The executable file “example” can be created instead.

Run Time Sequencer

The sequencer executes the state program
It is implemented as an event-driven application; no polling is needed
Each state set becomes an operating system thread

The sequencer manages connections to database channels through Channel
Access

It provides support for channel access get, put, and monitor operations

It supports asynchronous execution of delays, event flag, pv put and pv get
functions

Only one copy of the sequencer code is required to run multiple programs

Commands are provided to display information about the state programs
currently executing

Executing a State Program

From an I0C console

B On vxWorks:
seq &vacuum control

B On other operating systems:
seg vacuum contr ol

B To stop the program
— seqStop vacuum control

Debugging

B Use the sequencer's query commands:
seqShow

displays information on all running state programs
segShow vacuum cont r ol

displays detailed information on program
sedChanShow vacuum cont r ol

displays information on all channels
segqChanShow vacuum control, -

displays information on all disconnected channels

Debugging (continued)

B Use printf functions to print to the console
printf("Here | amin state xyz \n");
B Put strings to pvs
sprintf(seqMsgl, "Here | amin state xyz");
pvPut (seqMsgl) ;
B On vxWorks you can reload and restart
seqgSt op vacuum contr ol
... edit, recompile ...
|d < exanple.o
seqg &acuum contr ol

Debugging — seqShow

epi cs> seqShow

Program Nane Thread ID Thread Nane SS Nane
stabilizer ede78 stabilizer stabilizer SS1
beamlraj ectory db360 beamlraj ectory bpnilr aj ect orySS

aut oCont r ol ed620 aut oCont r ol autoCt | SS

Debugging — seqShow

epi cs> segShow stabilizer

State Program "stabilizer"
initial thread id ede78
thread priority = 50
nunber of state sets
nunber of syncQ queues
nunber of channel s 3
nunber of channel s assi gned 3
nunber of channel s connected 3
options: async=0, debug=0, newef =1,

1
=0

"stabilizer SS1"
stabilizer;
"init"

State Set:

t hread name
First state
Current state "wai t For Enabl e"

Previ ous state "init"

El apsed tine since state was entered

thread id

reent =0,

conn=1, nmi

974456 Oxede78

88. 8 seconds

n=0

A

Argonne

NATIONAL LABORATORY

Debugging — seqChanShow

epi cs> seqChanShow stabilizer
State Program "stabilizer"
Nunmber of channel s=3

#1 of 3:

Channel name: "stabilizerC
Unexpanded (assigned) nane: "stabilizerC
Vari abl e nane: "enabl eButton”

address = 154120 = 0x25a08
type = short
count =1
Value = 0
Monitor flag = 1
Moni t or ed
Assi gned
Connect ed
Get not conpleted or no get issued
Put not conpleted or no put issued
Status = 17
Severity = 3
Message =
Time stanp = <undefi ned>
Next? (skip count)

A

Argonne

NATIONAL LABORATORY

Additional Features

B Connection management:
when (pvConnect Count () != pvChannel Count())
when (pvConnected(Vin))
B Macros:
assign Vout to "{unit}:QutputV';
— must use the +r compiler options for this if more than one copy of the
sequence is running on the same ioc
seq &exanple, "unit=HV01"

B Some common SNC program options:
— +r make program reentrant (defaultis -r)
— - ¢ don't wait for all channel connections (default is +c)
— +a asynchronous pvGet () (defaultis - a)
— -wdon't print compiler warnings (default is +w)

Additional Features (continued)

B Access to channel alarm status and severity:
pvSt at us(var _nane)
pvSeverity(var_nane)

B Queued monitors save CA monitor events in a queue in the order they come in,
rather than discarding older values when the program is busy

syncQ var_nanme to event flag_nane [queue_ | ength]
pvGet Q(var _nane)

* removes oldest value from variables monitor queue. Remains true until
queue is empty.
pvFreeQ var nane)

Advantages of SNL

Can implement complicated algorithms

Can stop, reload, restart a sequence program without rebooting
Interact with the operator through string records and mbbo records
C code can be embedded as part of the sequence

All Channel Access details are taken care of for you

File access can be implemented as part of the sequence

When to use the sequencer

B For sequencing complex events
B E.g. parking and unparking a
telescope mirror

INTERJOCK RXD /
sTor b

Interlocked

MISTATE = QTHER

Initalising

MISTATE = NOT DOWN & EXTENDED.

M1STATE = DPWN & CENTRED & RETRACTED /

J Parked Stoooed
Misalianed g -
SEALS = DFLATED / pArk[cmo 1
UNPARK CND /
PSS = ON:

UNI CMD / 3
REJECT CMD MOVE TO HOST-PARK
Deflatina
N CMD / Raisina
UNPARK CMD /| PARK CMD /

PSS = ON Pk = ON
Depressurising INFLATE SEAL MJVE TO PRE PARK

IN POJFT-PARK POSN /

o

PARK CMD /
PSS=ON e
MOVE TO PRE-PARK P

[

APSS = DEJRESSURISED /
DEFLATE SEALS

M1STATE = DOWN & CHNTRED & RETRACTED /

IN PRE-PARK POSN /
A

PRE-PARK CHECKS = PASS /
= POST-PARK CHECKS = FAIL /
RETRACT AXIfL SUPPORTS UNPARK ALARM

ﬂ Manual-Mode

PRE-PARK CHECKS = FAIL/
PARK AlJARM

NPARK CMD /
EJECT CMD

POST-PARK CHECKS = PASS /
PSS = ON

MOVE TG NOR:
INFLATE SEAL}

PARK-CMD /
PSS = ON
Pre-Parked 05 2 OFF ARK Inflating
A 2

SEALS } INFLATED /
APSS =[N

UNPARK CMD /
JoVE T0 NOP :
INFLATE SEALS:

PSS OFF CM} / Pressurisina
PSS =

APSY = PESSURISED /
AOS | ON

RK-CMD /
S = OFF
VE TO PRE-PARK

Operating

zZ>3

Photograph courtesy of the Gemini Telescopes project

A

Argonne

NATIONAL LABORATORY

Should | Use the Sequencer?

(START >

CANIDO Y
THISIN A

DB?
CANIDO Y

THISIN A

\ 4

DB?

1 N
USE THE
SEQUENCER

A 4

USE A DATABASE

<
y

A

B

A

Argonne

B TORY

Acknowledgments

B Slides for this presentation have been taken from talks prepared by the following
people
— Bob Dalesio (LANL/SNS/LCLS)
— Deb Kerstiens (LANL)
— Rozelle Wright (LANL)
— Ned Arnold (Argonne)
— John Maclean (Argonne)

